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The influence of fiber rupture, fiber pull-out and fiber tensile strength distribution on the
post-cracking behavior of short-randomly-distributed fiber reinforced brittle-matrix
composites has been analyzed using an approach based on the Weibull weakest-link
statistics. The analysis led to the development of a predicting model for the composite
bridging stress-crack opening displacement (o, — §) law—a fundamental material property
necessary for the analysis of steady-state cracking in the composites. The proposed o, — §
relationship can be used to relate the composite tensile and fracture properties to the
microstructural parameters. The model revealed the importance of fiber strength
distribution as described by the Weibull weakest-link statistics in governing the
post-cracking response of the composite. The proposed model was able to reproduce the
results of an earlier model for a limiting case where fiber tensile rupture was accounted for
assuming a deterministic fiber tensile rupture strength. Model-predicted post-peak o, — §
curve was also in close agreement with those obtained from uniaxial tensile tests of a
Kevlar fiber reinforced cementitious composite where fiber tensile rupture was reported.
The model provided physical insights as to the micro-mechanisms controlling the
post-cracking response of short-fiber reinforced brittle-matrix composites where fibers
have a tensile strength distribution described by the Weibull weakest-link statistics.
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1. Introduction strength. A consequence of this assumption is that rup-
The post-cracking behavior of short-fiber reinforcedturing fibers must fail at the location of highest stress,
brittle-matrix composites can be predicted by the usevhich is at the matrix crack plane. Furthermore, in the
of a composite bridging stress-crack opening displaceabsence of a fiber/matrix frictional effect called snub-
ment @ — §) relationship. The; — § relationship de-  bing [5], fiber rupture is assumed to occur all-at-once
scribes the constitutive relationship between the tracwhen the crack opening displacement reaches a criti-
tion (o) acting across a matrix crack plane and thecal value at which the stress in the fiber is equal to the
separation distance) of the crack faces in a singly tensile rupture strength [4].
pre-cracked uniaxial tensile specimen loaded quasi- While ductile fibers such as steel fibers and polyethy-
statically to complete failure [1]. The. — § curve con-  lene fibers can be assumed to have deterministic tensile
sists of an ascending branch called the pre-peaks  rupture strengths, brittle fibers such as carbon fibers
curve and a descending branch called the post-peakere reported to exhibit tensile strength distributions.
oc — & curve (also referred to as the tension softeningChi et al. [6] studied the tensile strength distribution
curve). The pre-peak; — § relationship is an impor- of carbon fibers. Their study indicated that the ten-
tant material property that governs the composite firssile strength of carbon fibers follows a two-parameter
cracking strength and the conditions for pseudo-straiWeibull distribution function. The Weibull’s statistical
hardening associated with multiple cracking inthe com-theory [7, 8] is based on the “weakest link” concept
posite [2]. where the strength of a material is assumed to be gov-
An analytical model for the composite bridg- erned by the weakest strength of a large number of
ing stress-crack opening displacement relationshigtrengths.
of short-randomly-distributed fiber reinforced brittle- ~ Oh and Finnie [9] studied the statistical failure lo-
matrix composites was initially proposed by Li [3] for cations of a brittle body under various loading condi-
the case of no fiber rupture. In alater study, Maetejl.  tions. By adopting the Weibull weakest-link statistics
[4] extended this model to account for potential fiberand following the analysis of Oh and Finnie [9] and
tensile rupture. The extended model is referred to adatthewset al. [10], Thouless and Evans [11] pro-
the fiber pull-out and rupture model (FPRM). However, posed an analytical model which predicts the average
these analytical models have the limitation that fiberdiber stress-displacement relationship in continuous-
are assumed to exhibit a deterministic tensile rupturealigned fiber reinforced ceramics. In this paper, a
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mathematical model for predicting the complete-§  where
relationship is derived for a brittle-matrix reinforced

with short, randomly-distributed fibers having a tensile s 2thy 5.0
strength distribution satisfying the Weibull's weakest- (1 + n)Esdk’ (Lt/2)
link statistics.
and
2. Single-fiber stress-displacement 4702
. - o= ————.
relationship 0 L+ n)Erdy

Consider a single fiber bridging a plane crack as

shown in Fig. 1. Following a shgar-lag analysis, Li ot the moment of complete debonding = so), the
and Leung [2] developed a relationship between the o< in the fiber is at its maximum value:

debonding lengtly and the stress in the fibey:

4t¢ L
47 1+ max _ ymax _ "~ _ 6
og = %y (2) T T T ©
. ds _s 3 whereie = di/47. Within the debonding lengtly the
y= 4r(1+ 77)Ud = A0d ) bond stresg is assumed constant. By neglecting the
elastic bond stress, one can write the fiber axial stress
where as a function of locatiom within the debonding length:
Vs E¢
n= V. E z
mEm 0(04,2) =og(1— — @)
and y
o'
A= ———0.
4r(1+n)

3. Modeling fiber rupture

In their model, debonding was interpreted as the actiBased on weakest-link statistics, Thouless and Evans
vation of a frictional bond stress between the fiber [11]derived a probability density function for fiber fail-
and the matrix. In addition, they derived a fiber stressyre as a function of the peak stregsand the distance

displacement relationship: from the crack plane:
471+ nEs  Li [ 8\? /y [o(od, Z)T
= [—— Y= — = ®(og, 2) = wdrexpl —2 wd dz
o4 a e <8*) (04, 2) i p{ NEL] s
for 0<68<8 (4) 9 [o(od, z)]m ®)
op = —4T(€ 80— 9) for <8<t (5) 9o S

ck

where S =00Aé/m is the scale parameter (or charac-
teristic stress) anth is the Weibull modulus (or shape
parameter). The paramet&sandm can be experimen-

* * * * tally obtained by conducting single-fiber strength tests

on specimens having unit surface amga(= wdrLo).

The stresg depends on the choice of the unit surface

area of fiberAg in such a way thag = aoAé/m is con-

stant. For infinitely large values ofi the stresgg may

be interpreted as the deterministic tensile strength of

the fiber. A lower value ofm would indicate a greater

variability in the fiber tensile strength. A typical value

of Weibull modulus for carbon fibers is about 5 [6].

Using Equations 3 and 7 in Equation 8 we get:

_ m(m+1) og\ ™t
CD(Ud, Z) = W eXp|:— <§>
7 m—1
x (od - x) ©)
where

YYYY S:[MT%

2w did

Figure 1 Single fiber bridging a plane crack.
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The failure probability of fibers having an embedment
length? is given by:

i y=Aog
(o) =2 f / bogdzdrs  (10)
0 0

A
The factor 2 used in Equation 10 accounts for the fact 3 ]
that fibers could fail on either side of the crack, and Q y X h(0,5)-82
therefore, both sides of the crack must be considered.  §-¥-—-Y¥ ’
Note that the maximum stress that the fibers will sub- * y“ 3} h,8)-82
jected to is equal t8/1e (as per Equation 6). The sur- ¢ y
vival probability of fibers having an embedment length v
¢ is given by: L,-2¢ 4
h 4

E m+1
Gs(0) = 1— () = exp[—(gs) } (1)

Fig. 2 shows how the survival probabilitg depends
on the fiber embedment length for different val-
ues of Weibull modulim where the composite has
the following microstructural propertiesvs =0.02,
En=13,000 MPa,E; =69,800 MPa,t =4.5 MPa, _ _ - .
dr=0.012 mm,Ls=12.7 mm, A;=0.48 mn? and The corresponding survival probabiliy(s)is then:
0o =3310 MPa. For low values ah, the figure in-

dicates that fibers with short emdedment lengths have Lo /5\2 m+1

f
_(zxe8< ) )

Figure 3 Mean failure position for rupturing fibers with embedment
length¢ when the COD is.

high survival probability while fibers with long em- (8) = 1 — ¢(5) = exp —
bedment lengths have small survival probability. More
specifically, wherm is equal to 5, fibers with embed-
ment length less thafys=1 mm have a 100% survival
probability while fibers with embdement length greater
thanf =5 mm have a 0% survival probability. As The average failure position for rupturing fibers with
increases, the gap betwe&gand/ gets smaller and embedment length at a crack opening displacement
both ¢.s and ¢ approach a critical valué, = Sd/4r. 8 <4do is given by (see Fig. 3):

If mis increased whil&y is kept constant<,; would

5*

(13)

approach the critical embedment lendgth= od; /4t i(i)%
defined in the FPRM [4] wher&; is interpreted as the 2/02)»6 » Oy:“’d z2®(0y, 2) dz dog
deterministic tensile strength of the fiber. h(¢, 8) = .
The failure probability of fibers having an embed- 2 fo° Jo = @(0d, 2)dz doy
ment lengtlY at a crack opening displacemént g is oy maT
given by: _ 1S m+ 2 0 L (ﬁ)z
y (m+ 1)ar () [m +1'7 <2xes 8+

et y="1oq
OIf(5)=2/O /0 ®(og, 2)dzdog (12) (14)

where T'[a, X1, X2] is the generalized incomplete
gamma function defined by:

X2
A ::;TO I'[a, X1, X2] =/ ta-le7tdt (15)
T -=-m = 80 X1
E 0.6
'g The average failure position when all fibers (with
2 0a | embedment length) have failed § > &o):
2o
2
§ 02 h(¢) = S r m+2 0 (i)mﬂ
S oMm4+Doge) | m+1 7\ S
0 T T 7
0 1 2 3 4 5 6 7 (16)

Embedment length ¢ (mm) . . . .
et Tensth T The average tensile strength of rupturing fibers with

Figure 2 Effect of fiber embedment length on the survival probability. €mbedment lengthtaking into account the fiber stress
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Figure 4 Effect of Weibull modulus onthe mean location of fiber rupture Crack Opening Displacement (mm)

for fibers with embedment length= L¢/2.
Figure 5 Variation of mean failure position as functiondfor different
fiber embedment lengthts
distribution is given by:
the case because the maximum stress that can develop

2 [ Oy:Aod @0, Ddzdby S in a fiber is proportional to the fiber embedment length

o) = - = (see Equation 6).
2[5 [Y=4 9(0q, ) dz g KO
4. Composite bridging stress-crack opening
m+1
wr| Mt 2’ 0, (i) _mt lh(g) (17) displacement (o — §) law
m+1 reS A Li et al.[12] showed that the. — § curve can be pre-

dicted by summing the contributions of the individual

Fig. 4 shows the effect of Weibull modulus on the fibers intersecting the matrix crack plane, according to
variation of average fiber failure positidn(L¢/2, §)  the following relationship:
as function of crack opening displacement for a com- (L2 00w
posite with the same microstructural properties as that z 1/£)co
shown in Fig. 2. As indicated, the average failure po- °¢ = Vf/o /0 ov(8, 0, w)p(w) p(6) dw do
sition increases as function of COD. The maximum (18)
crack opening displacement shown corresponds to the
CODé* (0.78 mm) at which complete debonding of the whereay,(8, 6, w) is the fiber bridging stress amu{w)
fibers with the longest embedment length<L¢/2)  andp(¢) are probability density functions of the orien-
takes place. After this stage, no more fiber rupture williation angle and centroidal distance of fibers from the
take place. It is apparent from Fig. 4 that fiber rup-matrix crack plane. For a uniform random distribution
ture takes place inamore progressive mannerwhisn  p(w) and p(9) are defined as follows:
small. The figure also indicates that as the Weibull mod-
ulus increases the mean failure position gets smaller.
From the behavioral trends shown in Fig. 4, it appears
that in the limit wherm approaches infinitya(L¢/2, §)
approaches zero for any value &f This would be p(@) = sind for 0<6 <
the case of fibers with a deterministic tensile rupture
strength. For each value of m, the figure also shows the The inclination of the fiber with respect to the matrix
average tensile strength for all fibers with embedmengack plane (see Fig. 6) could result in an additional
length equal td_s/2. Asm gets larger, the average ten-
sile strength approacheg where S =aoAé/m is the
scale parameter. .

Fig. 5 shows the variation of mean fiber failure posi- Matrix
tion as function of COD for different fiber embedment
lengths (n=5 in this case). For each curve, the last
data point shown corresponds to the condition where
the fiber has completely debondeti §p). As indi- _+_
cated, the maximurh(¢, §) is always a fraction of the
embedment lengthand decreases with decreasing val-
ues of¢. Also shown in that plot is the average tensile
strength of all rupturing fibers with embedment length
¢ for each value of. The figure shows that the average
tensile strength decreases with decreasing valués of t )
This is consistent with what one would expect given Fiber
that if a fiber with short emdedment lengthas to fail,  Figure 6 Definition of fiber embedment length centroidal locations
failure would have to be at a low value of stress. This isand inclination angle.

2 L
pw) =~ for  O<w= Ef cos@) (19
f

(20)

L2 T

Matrix Crack Plane

2206



frictional effect called snubbing [5]. When present, theare in a debonding mode while others are in a pull-out
snubbing effect results in an amplification of the stressnode. The contribution of the first subgroup is com-
in the fiber at the point where it exits from the matrix. puted by multiplying the fiber bridging stress gy(é).
This effect has been experimentally observed in nylorThe contribution of the second subgroup is computed by
and polypropylene fiber reinforced mortar [5]. The in- multiplying the fiber bridging stress ly(s). Note that
clusion of the snubbing effectin the present formulationthe fiber bridging stress for this subgroup of fibers de-
will render the solution analytically unmanageable. Topends onthe mean fiber failure positiuf, §) as shown
simplify the analysis, the snubbing effect is thereforein the appendix. Therefore, rupturing fibers would still
assumed to be negligible. Accordingly, the fiber bridg-contribute to the composite bridging stress through fric-

ing stress,(8, 6, w) will be given by: tional fiber pull-out. However, this contribution is quite
small compared to that of the surviving fibers. This is
(8, 6, w) = unlike the case of continuous-aligned fiber reinforced
o composites where rupturing fibers are the only contrib-
L (62 utors to the frictional fiber pull-out portion of the — §
A= o (3_*> for 0=8=d (218) Ve The complete derivation of the debondigg- §
4 branch is given in Appendix A. After dropping the neg-
op = 4r(t+5%—9) for so<8<¢ ligible contribution of rupturing fiber to frictional fiber
dk - pull-out and summing all other contributions, the fol-
L N ~ . . _ . . . . .
_ _f(x ~ 52— 5) (21b) lowing expression of the; — é relationship is obtained:
2he
S\ 1/2 . ~
wherex = £/(L¢/2). With the change of variable oc = (S_*) T'[a, t*, to(8)] + 6*[x*]?
2, _2(L_ w x I'[3a, to(8), t2(8)] + x*TI'[2a, to(5), t2(5)]
~Lr Li\2 cosp A o /2
- 5rta. o). 6+ 05 )
Equation 18 becomes: 8
m+1 5\ Y2 .
Vi (31 X + 1-— (—) —I'[a, t*, to(3)]
o= / f on(8, 0, X)sin()dx dd  (22) X 8*
0 0 A ~
v [l for §<§* (24)
Oc= — / ob(8, X) dX (23)
2 Jo where
To derive the governing relationship for the complete R oc 1
oc — 8 curve, it would be convenient to separately con- Oc = S AW a= m+1
sider two distinct branches of this curve—The debond- g(m—1> (E)
ing o¢c — & branch and the pull-out. — é branch. +

4.1. Debonding o, — 6 branch

The debonding. — § branch consists of the contribu- . 1/ 8§\2 m+t R §\mtt

tions of two different fiber groups. In the first group,  (8) = F(S_*) . u(d) = (_>

fibers completely debond and then pull-out. These are

the surviving fibers. Fibers with the longest embed-

ment length { = L{/2) will completely debond when

8 =&*. Therefore, the debonding. — é§ branch corre-

sponds to the portion of the. —§ curve for which A1

§ < &*. At each value o8, a fraction of the fibers are in Xo = (i) :

a debonding mode, while the others (with short embed- 5*

ment lengths) are eitherin a pull-out mode or have com-

pletely pulled-out of the matrix and no longer contribute

to the composite bridging stress. This is explicitly ac-4.2. Pull-out ;. — § branch

counted for by proper selection of the integration pointsThe Pull-outs. — § branch corresponds to the portion of

in Equation 23 as shown in Appendix A. The contribu-theo. — § curve for whichs > §*. Two different groups

tion of the surviving fibers is computed by multiplying contribute to this branch. The first group consists of

the fiber bridging stress ty(¢). those fibers that have survived and are in a pull-out
The second group of fibers consists of those fibersnode. The second group corresponds to those fibers that

which rupture sometime during the debonding processhave failed during debonding and are also in a pull-out

The contribution of these fibers is computed by mul-mode. The contribution of the fibers from the second

tiplying the fiber bridging stress bg:(¢). Within this  group was found to be very negligible compared to the

group of fibers, at each value of CQf) some fibers one from the first group. After dropping the negligible

and
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contribution of the second group of fibers, the post-pealfracture surface revealed that a significant proportion of
oc — ¢ relationship would be given by: the reinforcing fibers have ruptured in the composite.
The microstructural parameters used in the predicting
model were as followsV; = 0.02, E,, = 13, 000 MPa,
E;=69, 800 MPa, t=45 MPa, d=0.012 mm,
Li=127 mm, m=100 and §=0oA;™ (where
Ao =1 mn? ando = 2700 MPa). Except fam andS,,
all values of microstructural parameters are actual. The
interfacial bond strength has been independently mea-
: ' Oc — sured by Wang [13]. In the absence of independently-
_ experimental verification determinedn andS, for Kevlar fibers, the assumed val-
Fig. 7 shows the complete. — & curve for a compos- g5 seem to represent well the experimental data. The
ite with the same microstructural properties as the ongg|atively high value ofused implies that Kevlar fibers
presented in Fig. 2. For this compositeis equal 1o are assumed to have a narrow fiber strength distribution.
0.781 mm and the composite bridging stress becomes Note that in most fiber reinforced cementitious com-
equal to zero whe is equal to approximately 4 mm. posites the complete pre-peak— § curve is very dif-
The ultimate composite bridging stresg occurs ata  ficylt to measure. Part of the difficulty is that the micro-
COD4, equal to 0.135 mm. Inwhat follows, the portion ¢rack opening is very small at this fiber bridging stage,
of theoe — & curve for whichs < é, will be referred to 4 in ordinary fiber reinforced cementitious compos-
as the pre-peak. — § curve and that for which > dy jtes, this portion is completely masked by the matrix
will be referred to as the post-peak— § curve. ~strength. This means that as soon as the matrix cracks,
Fig. 8 shows a comparison between model-predicteghe |pad has already exceeded the maximum bridging
and experimentally-measured post-peak-§ curves  strength of the fibers, and only the post-peak portion is
for a cementitious composite with 2% by volume of reyealed in the experiment. This condition is schemat-
Kevlar fiber reinforcement. The original data was re-jca|ly jllustrated in Fig. 9. The figure shows that the
ported by Maalegt al.[4]. Post-test examination of the crack has not completely propagated through the speci-
men, but the crack opening displacement at the mid-

6 = 8*[x*1°T'[3a, t*, u(5)] + x*TI'[2a, t*, 1 (5)]
— 8T [a, t*, t2(8)] (25)

5. Discussion of the o; — d curve and

point of the crack,, has already exceeded the COD

30 . - . .
Al Fibers v, =0.02 corresponding to the maxima of the composite bridg-
% 25 | = Suniving Fibers| B, =13,000 MPa ing stresr¢,. By the time the crack reaches both edges
g & = 0.135 mm E, = 69,800 MPa of the specimen, the composite bridging stress trans-
2 2 8 =0.781 mm t =4.5MPa ferred across the matrix crack would be on the post-peak
8 20
& L, =12.7 mm
2 d; =0.012 mm
& 15 1 5
k) A, =048 mm
a =3310 MPa
2 10 o0 " A A
[ S, =2858 MPa.mm”
2
13 m=S5
38 51
0¥ T
0% & 2 3 4
COD, § (mm)

Figure 7 Completes; — § curve showing the contribution of surviving
fibers.

Post-Peak 6.-8 Curve

N\ .
T,

5
é Y TRV ‘--..umu||||I|IIIIIIIIIIIIIIIIIIIJ|IIIIIIIIIIIIIIIIIIIIIImuu......
E, =13,000 MPa o KV-U-2 '
4 = |<
: E, = 69,800 MPa s KV-U-3 C i C
T =4.5MPa — Proposed Model H
a3 L, =127 mm i
£
s d, =0.012 mm H
> oo S, = 2700 MPa.mm®'® ;
21 4 !
s m =100
14
0 i
0.0 0.5 1.0 15 2.0 25 v ¢ ¢ ¢ ¢ ¢ ¢
8 (mm)

Figure 9 Propagating matrix crack bridged by fibers. The figure illus-
Figure 8 Comparison between model-predicted and experimentally-trates a condition where the pre-pesk— § curve can-not be obtained
measured post-peak — § curves. from a uniaxial tension test.
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oc— & curve. This is believed to be the reason why
the pre-peak. — § curve was not captured for the 2%
Kevlar fiber composite.

6. Parametric study E 15 1

Fig. 10 shows the effect of Weibull modulus on ¢ |, T —
theoc — 8 curve. As indicated, composites with lower 10 1§ ~Lf=64mm
values ofm have higher ultimate composite bridg- TS

ing stressesy,. In this case, fiber rupture occurs in a
more progressive manner—allowing a significant pro-
portion of fibers to transfer higher stresses across th
matrix crack. As the Weibull modulus increases,

30

25

20 -

€ 0 0.1 02 03 04 05

8 (mm)

decreases but the rate of stress loss from the peak in-
creases. For large valuesofi.e.m > 100), the present Figure 11 Effect of fiber length o — 5 curve.
model predicted & — § curve that is close agreement
with that obtained from the FPRM model (which as-
sumes that fibers have a deterministic tensile rupture
strength). In this case, the curve shows a sudden drop il
stress from the peak due to fiber rupture. As discusse(
earlier, when a deterministic tensile rupture strength
is assumed, all fibers with large embedment lengthsg

40

35 1

30

-+ So = 1000

- So =2000
—-So = 2857
-&-So = 4000

25 A

20 1

(£ > Le =o1,0;/47) fail when the COD reaches a criti-
cal value equal té.. In this case, the post-peak portion
of theo. — § curve is due to the contribution of the sur-
viving fibers (fibers with embedment length< L ().

Fig. 11 shows a series of — § curves for the same
composite with different lengths of fibers. As the fig-

ure shows, composites with longer fiber lengths have

¢
15 1

10

0 T T
0.3 0.4
8 (mm)

0.1 0.2 0.5

higher composite peak stresses. This is the case because

-+ m=1000
—~—FPRM

0.2 03

8 (mm)

0.1 0.4

@)

o, (MPa)

8 (mm)
®)

Figure 10 Effect of Weibull modulus oro. —§ curve. (a) Pre-peak
oc — 8 curve. (b) Complete. — § curve.

Figure 12 Effect of scale parameter (characteristic stressgr §
curve.

at each value of, longer fibers provide more effective
stress transfer across the matrix crack. As larger pro-
portions of fibers carry higher stresses, larger propor-
tions of fibers fail as well. This is why there is a sharper
drop in the bridging stress from the peak for composites
with longer fiber lengths. If one defines the composite
bridging fracture energ@. as the area under thig — 8
curve, one can conclude that below a critical value of
L¢, an increase in the length of the fiber is associated
with an increase in both¢, and G.. However, above
the same critical value, an increaselipis associated
with an increase iw., but a decrease iG..

Fig. 12 shows the effect of scale paramedgon the
oc — 8 curve for the same composite. As indicated, a
composite with a higher scale parameSrhas also
higher composite bridging strength and fracture en-
ergy. At the micro-structural level, an increaseSp
results in delaying the occurrence of fiber rupture as
well as reducing the proportions of rupturing fibers.
The former results in increasing the composite bridg-
ing strength while the latter results in increasing the
composite bridging fracture energy.

Figs 13 and 14 show the effects of interfacial bond
strength and fiber diameter on tag— & curve, respec-
tively. These figures indicate that both parameters in-
fluence thes; — § curve in the same manner as does the
length of the fiber. Both figures indicate the presence
of a critical interfacial bond strength (assuming that all
other parameters are held constant) and a critical fiber
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Figure 13 Effect of interfacial bond strength an. — § curve.
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Figure 14 Effect fiber diameter ona. — § curve.
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Figure 15 Effect fiber length on the composite bridging strength.

As indicated, an increase in the length of the fiber is
associated with an increase in the composite bridging
strength. However, the rate of strength increase starts
to diminish when the normalized fiber length is greater
than 2. The observed trend suggests that this rate even-
tually becomes equal to zero. ¥is thought of as the
average tensile strength of the fiber, one can conclude
that as the normalized fiber length approaches 2, the
average tensile stress in the fiber starts to appr&ch
OnceSis reached, no further increase in the average
tensile stress of the fiber is expected. For each value
of m, the normalized composite bridging strength ap-
proaches a limiting value when the length of the fiber
becomes very large. As gets larger, this limiting value
appears to approach 0.5. This result is consistent with
the classical concept that when fibers are infinitely long
and randomly oriented in three dimensions, the num-
ber of fibers crossing a planar matrix crack is equal to
half the number if all fibers were oriented in a direction
perpendicular to the matrix crack [14]. In either case,
the post cracking strength would be equal to the num-
ber of fibers times the maximum load transferred by
each fiber. For infinitely long fibers, randomly oriented
in three dimensions in a brittle matrix, the compos-
ite post-cracking strength would be equal to ¥;by,
whereoy, is the tensile strength of the fiber.

7. Conclusions

The structural performance of a fiber reinforced brittle
matrix composite can be related to the material post-
cracking behaviors; — § law) as well as the component
size and geometry. For this reason it is important to be
able to determine how the — § law can be influenced

by tailoring the microstructural parameters. The pre-
ceding discussion suggests that the Weibull modulus
and characteristic stress have a significant effect on the
composites; — 8 law. The presence of a fiber strength
distribution induces a progressive fiber rupture mech-
anism which seemed to positively affect both the pre-
peak and the post-peak — § curves. The former was
found to influence the conditions for steady-state crack-
ing while the latter was found to influence the mecha-
nism of slow crack propagation. In addition to the two
parameters of the Weibull distribution, other parameters
such as the length and diameter of the fiber as well as the
interfacial bond strength would also influencedhe- 8
curve. These parameters influence the state of stress
in the fibers as well as the fiber/matrix stress transfer

diameter for the composite. Up to the critical value of mechanism. The proposed model points to the existence

interfacial bond strength, an increaserinesults in an

of an optimum value for each one these parameters (as-

increase in botlac, andG.. Thereafter, an increase in suming all others are held constant), thereby offering a

7 is associated with an increasenigy and a decrease in  range of possibilities on how the composite properties
G.. For fiber diameter, above the critical value, a reduccan be optimized.

tion in d; increases both., andG.. Below this critical

value, however, a reduction in fiber diameter positively

affectsoc, while negatively affectingsc.

Fig. 15 shows the variation of normalized compositeAppendix A. Derivation of the
bridging strength as function of normalized fiber length.o . — § relationship

For a given value of Weibull modulus, the normal-

A.1. Debonding o. — § branch

izing parametelS (which has units of stress) can be The debonding. — § branch consists of the contribu-
thought of as the average tensile strength of the fibetions of two different groups of fibers. In the first group,
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fibers completely debond and then pull-out, while in theDuring pull-out we should havé:< £ = x > x; where
second group fibers rupture during debonding. Thus x; =6, andx < xg. Thus

0c(8) = 0cs+ oct = (0csd+ chp) + (0ctd + Ucfp)

§ <8 (Al
where
ocsg= Contribution of surviving fibers te. during
debonding.
ocsp= Contribution of surviving fibers to. during
pull-out.
ocig = Contribution of failing fibers tas; during
debonding.
ocp = Contribution of failed fibers tar. during
pull-out.

A.1.1. Surviving fibers
During debonding we should have:

8 <8p=X>Xo

where
5\2
XO == (S_*) .
Thus:
Ve
o0sa= 5 / 6(X)0q dX (A2)
Xo
where

X m+1
qS(X)zeXp_<F) SRS (V7

S/
od= —| =
d X\ 3+

Evaluation of Equation A2 gives:

and

NIR

5\ 12 A
Ocsd = (3—*) F[a, t*, t0(5)] (A3)
where
~ Ocsd * 1 mtl
Ocsd = S Vi , U= e
(723)(3)
and

Vs Xo
Ocsp = E QS(X)Op dx (A4)
X1

6csp = S*[X*]ZFB& tO(S)’ t1(8)] + x*
x T'[2a, to(8), t1(8)] — 8T'[a, to(3), t2(5)]  (A5)

where
S, a2 3
0p = ;(x+8 x2 —§)
A.1.2. Failing fibers

During debonding, the contribution of the failing fibers
to o¢ is given by:

\Y/ 1
s = [ @(u(6)oadx (16)
Xo

. S 1/2 [ s 1 3 1/2
Gofd = = 1-|( =
Ocfd Qs(5)<8*) { X (5*>

—T[a t*, t(5)]} (A7)

Note thatgs(8) is used in Equation A6 to account for
the contributions of only those fibers which did not fail
yet at the COLSs.

For each value o8 < §*, rupturing fibers with em-
bedment lengtld will have a mean fiber failure position
equal toh(¢, 8). The contribution of the failing fibers to
oc during the sliding stage is valid fér< &g (or x > Xg).
Therefore, this contribution can be computed from the
following equation:

Vi [t S o s
v =y | au@)hD)-b2dx (48)

1
Ocfp = / qf(x)
Xo

For each value off <é§*, numerical integration of
Equation A9 is necessary to computg(s).

LaG)IR(x. 3) - 5/21dx (A9)

m+
X

*

A.2. Pull-out 0. — 8 branch

Two different groups contribute to the pull-oai — §
branch. The first group consists of those fibers that have
survived and are in a stage of pull-out. The second
group corresponds to those fibers that have failed during
debonding and are in a pull-out mode. Thus:

O’C(5) = 0Ocs+ 0¢f 6 > 5* (AlO)
where
ocs= Contribution of surviving fibers te. during
pull-out.
ot = Contribution of failed fibers te. during pull-
out.
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A.2.1. Surviving fibers
The contribution of the surviving fibers g is given
by the following equation:

\VE
o=y [ o dx (A11)
X1

Ges = 8*[X*]?T[3a, t*, ta(5)] + x*T'[2a, t*, t2(5)]
— 8T [a, t*, u(8)] (A12)

A.2.2. Failed fibers
The contribution of the failed fibers t@. is given by
the following equation

1
3 | a0 fo+

S*
2
Ocf = §X —

S} dx (A13)

. ! m+ 1], 8 <
Ocf :/ g (x) x_: [h(x)+ EXZ—S] dx (A14)
X2

where

R 5 R
h(x)) + =x3 -8 =0

5 (A15)

To obtaino (8) for each value of > §* , Equation A15
would have to be solved fox, and the integral in

integral, only those fibers with large valuesigf) are
counted as contributing fibers.
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