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The influence of fiber rupture, fiber pull-out and fiber tensile strength distribution on the
post-cracking behavior of short-randomly-distributed fiber reinforced brittle-matrix
composites has been analyzed using an approach based on the Weibull weakest-link
statistics. The analysis led to the development of a predicting model for the composite
bridging stress-crack opening displacement (σc− δ) law—a fundamental material property
necessary for the analysis of steady-state cracking in the composites. The proposed σc− δ
relationship can be used to relate the composite tensile and fracture properties to the
microstructural parameters. The model revealed the importance of fiber strength
distribution as described by the Weibull weakest-link statistics in governing the
post-cracking response of the composite. The proposed model was able to reproduce the
results of an earlier model for a limiting case where fiber tensile rupture was accounted for
assuming a deterministic fiber tensile rupture strength. Model-predicted post-peak σc− δ
curve was also in close agreement with those obtained from uniaxial tensile tests of a
Kevlar fiber reinforced cementitious composite where fiber tensile rupture was reported.
The model provided physical insights as to the micro-mechanisms controlling the
post-cracking response of short-fiber reinforced brittle-matrix composites where fibers
have a tensile strength distribution described by the Weibull weakest-link statistics.
C© 2001 Kluwer Academic Publishers

1. Introduction
The post-cracking behavior of short-fiber reinforced
brittle-matrix composites can be predicted by the use
of a composite bridging stress-crack opening displace-
ment (σc− δ) relationship. Theσc− δ relationship de-
scribes the constitutive relationship between the trac-
tion (σc) acting across a matrix crack plane and the
separation distance (δ) of the crack faces in a singly
pre-cracked uniaxial tensile specimen loaded quasi-
statically to complete failure [1]. Theσc− δ curve con-
sists of an ascending branch called the pre-peakσc− δ
curve and a descending branch called the post-peak
σc− δ curve (also referred to as the tension softening
curve). The pre-peakσc− δ relationship is an impor-
tant material property that governs the composite first
cracking strength and the conditions for pseudo-strain
hardening associated with multiple cracking in the com-
posite [2].

An analytical model for the composite bridg-
ing stress-crack opening displacement relationship
of short-randomly-distributed fiber reinforced brittle-
matrix composites was initially proposed by Li [3] for
the case of no fiber rupture. In a later study, Maalejet al.
[4] extended this model to account for potential fiber
tensile rupture. The extended model is referred to as
the fiber pull-out and rupture model (FPRM). However,
these analytical models have the limitation that fibers
are assumed to exhibit a deterministic tensile rupture

strength. A consequence of this assumption is that rup-
turing fibers must fail at the location of highest stress,
which is at the matrix crack plane. Furthermore, in the
absence of a fiber/matrix frictional effect called snub-
bing [5], fiber rupture is assumed to occur all-at-once
when the crack opening displacement reaches a criti-
cal value at which the stress in the fiber is equal to the
tensile rupture strength [4].

While ductile fibers such as steel fibers and polyethy-
lene fibers can be assumed to have deterministic tensile
rupture strengths, brittle fibers such as carbon fibers
were reported to exhibit tensile strength distributions.
Chi et al. [6] studied the tensile strength distribution
of carbon fibers. Their study indicated that the ten-
sile strength of carbon fibers follows a two-parameter
Weibull distribution function. The Weibull’s statistical
theory [7, 8] is based on the “weakest link” concept
where the strength of a material is assumed to be gov-
erned by the weakest strength of a large number of
strengths.

Oh and Finnie [9] studied the statistical failure lo-
cations of a brittle body under various loading condi-
tions. By adopting the Weibull weakest-link statistics
and following the analysis of Oh and Finnie [9] and
Matthewset al. [10], Thouless and Evans [11] pro-
posed an analytical model which predicts the average
fiber stress-displacement relationship in continuous-
aligned fiber reinforced ceramics. In this paper, a
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mathematical model for predicting the completeσc− δ
relationship is derived for a brittle-matrix reinforced
with short, randomly-distributed fibers having a tensile
strength distribution satisfying the Weibull’s weakest-
link statistics.

2. Single-fiber stress-displacement
relationship

Consider a single fiber bridging a plane crack as
shown in Fig. 1. Following a shear-lag analysis, Li
and Leung [2] developed a relationship between the
debonding lengthy and the stress in the fiberσd:

σd = 4τ (1+ η)

df
y (2)

y = df

4τ (1+ η)
σd = λσd (3)

where

η = Vf Ef

VmEm

and

λ = df

4τ (1+ η)
.

In their model, debonding was interpreted as the acti-
vation of a frictional bond stressτ between the fiber
and the matrix. In addition, they derived a fiber stress-
displacement relationship:

σd =
√

4τ (1+ η)Efδ

df
= L f

2λe

(
δ̂

δ̂∗

) 1
2

for 0≤ δ ≤ δ0 (4)

σp = 4τ (`+ δ0− δ)
df

for δ0 ≤ δ ≤ ` (5)

Figure 1 Single fiber bridging a plane crack.

where

δ̂∗ = 2τ L f

(1+ η)Efdf
, δ̂ = δ

(L f/2)

and

δ0 = 4τ`2

(1+ η)Efdf
.

At the moment of complete debonding (δ= δ0), the
stress in the fiber is at its maximum value:

σmax
p = σmax

d = 4τ`

df
= `

λe
(6)

whereλe= df/4τ . Within the debonding lengthy the
bond stressτ is assumed constant. By neglecting the
elastic bond stress, one can write the fiber axial stress
as a function of locationz within the debonding length:

σ (σd, z) = σd

(
1− z

y

)
(7)

3. Modeling fiber rupture
Based on weakest-link statistics, Thouless and Evans
[11] derived a probability density function for fiber fail-
ure as a function of the peak stressσd and the distance
from the crack planez:

8(σd, z) = πdf exp

{
−2

∫ y

0
πdf

[
σ (σd, z)

S0

]m

dz

}

× ∂

∂σd

[
σ (σd, z)

S0

]m

(8)

whereS0= σ0A1/m
0 is the scale parameter (or charac-

teristic stress) andm is the Weibull modulus (or shape
parameter). The parametersS0 andmcan be experimen-
tally obtained by conducting single-fiber strength tests
on specimens having unit surface areaA0 (=πdf L0).
The stressσ0 depends on the choice of the unit surface
area of fiberA0 in such a way thatS0= σ0A1/m

0 is con-
stant. For infinitely large values ofm the stressσ0 may
be interpreted as the deterministic tensile strength of
the fiber. A lower value ofm would indicate a greater
variability in the fiber tensile strength. A typical value
of Weibull modulus for carbon fibers is about 5 [6].
Using Equations 3 and 7 in Equation 8 we get:

8(σd, z) = m(m+ 1)

2λSm+1
exp

[
−
(
σd

S

)m+1
]

×
(
σd− z

λ

)m−1

(9)

where

S=
[

Sm
0 (1+m)

2πdfλ

] 1
m+ 1
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The failure probability of fibers having an embedment
length` is given by:

qf (`) = 2
∫ `

λe

0

∫ y= λσd

0
8(σd, z) dz dσd (10)

The factor 2 used in Equation 10 accounts for the fact
that fibers could fail on either side of the crack, and
therefore, both sides of the crack must be considered.
Note that the maximum stress that the fibers will sub-
jected to is equal tò/λe (as per Equation 6). The sur-
vival probability of fibers having an embedment length
` is given by:

qs(`) = 1− qf (`) = exp

[
−
(
`

λeS

)m+1
]

(11)

Fig. 2 shows how the survival probabilityqs depends
on the fiber embedment length̀ for different val-
ues of Weibull modulim where the composite has
the following microstructural properties:Vf = 0.02,
Em= 13,000 MPa,Ef = 69,800 MPa,τ = 4.5 MPa,
df = 0.012 mm,L f = 12.7 mm, A0= 0.48 mm2 and
σ0= 3310 MPa. For low values ofm, the figure in-
dicates that fibers with short emdedment lengths have
high survival probability while fibers with long em-
bedment lengths have small survival probability. More
specifically, whenm is equal to 5, fibers with embed-
ment length less thaǹcs= 1 mm have a 100% survival
probability while fibers with embdement length greater
than`cf= 5 mm have a 0% survival probability. Asm
increases, the gap between`cs and`cf gets smaller and
both`cs and`cf approach a critical valuèc= Sdf/4τ .
If m is increased whileS0 is kept constants,̀c would
approach the critical embedment lengthLc= σ0df/4τ
defined in the FPRM [4] whereσ0 is interpreted as the
deterministic tensile strength of the fiber.

The failure probability of fibers having an embed-
ment length̀ at a crack opening displacementδ≤ δ0 is
given by:

qf (δ) = 2
∫ Lf

2λe

(
δ̂

δ̂∗
)1/2

0

∫ y= λσd

0
8(σd, z) dz dσd (12)

Figure 2 Effect of fiber embedment length on the survival probability.

Figure 3 Mean failure position for rupturing fibers with embedment
length` when the COD isδ.

The corresponding survival probabilityqs(δ)is then:

qs(δ) = 1− qf (δ) = exp

−( L f

2λeS

(
δ̂

δ̂∗

)1/2
)m+1


(13)

The average failure position for rupturing fibers with
embedment length̀ at a crack opening displacement
δ≤ δ0 is given by (see Fig. 3):

h(`, δ) = 2
∫ Lf

2λe

(
δ̂

δ̂∗
) 1

2

0

∫ y= λσd

0 z8(σd, z) dz dσd

2
∫ `

λe

0

∫ y= λσd

0 8(σd, z) dz dσd

= λS

(m+ 1)qf (`)
0

m+ 2

m+ 1
, 0,

(
L f

2λeS

(
δ̂

δ̂∗

) 1
2

)m+1


(14)

where 0[a, x1, x2] is the generalized incomplete
gamma function defined by:

0[a, x1, x2] =
∫ x2

x1

ta−1e−t dt (15)

The average failure position when all fibers (with
embedment length̀) have failed (δ≥ δ0):

h(`) = λS

(m+ 1)qf (`)
0

[
m+ 2

m+ 1
, 0,

(
`

λeS

)m+1
]
(16)

The average tensile strength of rupturing fibers with
embedment length̀taking into account the fiber stress
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Figure 4 Effect of Weibull modulus on the mean location of fiber rupture
for fibers with embedment length̀= L f/2.

distribution is given by:

σ (`) = 2
∫ `

λe

0

∫ y= λσd

0 σd8(σd, z) dz dσd

2
∫ `

λe

0

∫ y= λσd

0 8(σd, z) dz dσd

= S

qf (`)

×0
[

m+ 2

m+ 1
, 0,

(
`

λeS

)m+1
]
= m+ 1

λ
h(`) (17)

Fig. 4 shows the effect of Weibull modulusm on the
variation of average fiber failure positionh(L f/2, δ)
as function of crack opening displacement for a com-
posite with the same microstructural properties as that
shown in Fig. 2. As indicated, the average failure po-
sition increases as function of COD. The maximum
crack opening displacement shown corresponds to the
CODδ∗ (0.78 mm) at which complete debonding of the
fibers with the longest embedment length (`= L f/2)
takes place. After this stage, no more fiber rupture will
take place. It is apparent from Fig. 4 that fiber rup-
ture takes place in a more progressive manner whenm is
small. The figure also indicates that as the Weibull mod-
ulus increases the mean failure position gets smaller.
From the behavioral trends shown in Fig. 4, it appears
that in the limit whenm approaches infinity,h(L f/2, δ)
approaches zero for any value ofδ. This would be
the case of fibers with a deterministic tensile rupture
strength. For each value of m, the figure also shows the
average tensile strength for all fibers with embedment
length equal toL f/2. Asm gets larger, the average ten-
sile strength approachesσ0 whereS0= σ0A1/m

0 is the
scale parameter.

Fig. 5 shows the variation of mean fiber failure posi-
tion as function of COD for different fiber embedment
lengths (m= 5 in this case). For each curve, the last
data point shown corresponds to the condition where
the fiber has completely debonded (δ= δ0). As indi-
cated, the maximumh(`, δ) is always a fraction of the
embedment length̀and decreases with decreasing val-
ues of`. Also shown in that plot is the average tensile
strength of all rupturing fibers with embedment length
` for each value of̀ . The figure shows that the average
tensile strength decreases with decreasing values of`.
This is consistent with what one would expect given
that if a fiber with short emdedment length` has to fail,
failure would have to be at a low value of stress. This is

Figure 5 Variation of mean failure position as function ofδ for different
fiber embedment lengths̀.

the case because the maximum stress that can develop
in a fiber is proportional to the fiber embedment length
(see Equation 6).

4. Composite bridging stress-crack opening
displacement (σc− δ) law

Li et al. [12] showed that theσc− δ curve can be pre-
dicted by summing the contributions of the individual
fibers intersecting the matrix crack plane, according to
the following relationship:

σc = Vf

∫ π

2

0

∫ (L f/2) cosθ

0
σb(δ, θ, w)p(w)p(θ ) dw dθ

(18)

whereσb(δ, θ, w) is the fiber bridging stress andp(w)
andp(θ ) are probability density functions of the orien-
tation angle and centroidal distance of fibers from the
matrix crack plane. For a uniform random distribution
p(w) and p(θ ) are defined as follows:

p(w) = 2

L f
for 0≤ w ≤ L f

2
cos (θ ) (19)

p(θ ) = sinθ for 0≤ θ ≤ π
2

(20)

The inclination of the fiber with respect to the matrix
crack plane (see Fig. 6) could result in an additional

Figure 6 Definition of fiber embedment length̀, centroidal locationw
and inclination angleθ .
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frictional effect called snubbing [5]. When present, the
snubbing effect results in an amplification of the stress
in the fiber at the point where it exits from the matrix.
This effect has been experimentally observed in nylon
and polypropylene fiber reinforced mortar [5]. The in-
clusion of the snubbing effect in the present formulation
will render the solution analytically unmanageable. To
simplify the analysis, the snubbing effect is therefore
assumed to be negligible. Accordingly, the fiber bridg-
ing stressσb(δ, θ, w) will be given by:

σb(δ, θ, w) =

σd = L f

2λe

(
δ̂

δ̂∗

) 1
2

for 0≤ δ ≤ δ0 (21a)

σp = 4τ (`+ δ0− δ)
df

for δ0 ≤ δ ≤ `

= L f

2λe

(
x − δ̂∗x2− δ̂) (21b)

wherex= `/(L f/2). With the change of variable

x = 2

L f
` = 2

L f

(
L f

2
− w

cosθ

)
Equation 18 becomes:

σc = Vf

2

∫ π

2

0

∫ 1

0
σb(δ, θ, x) sin(2θ ) dx dθ (22)

σc = Vf

2

∫ 1

0
σb(δ, x) dx (23)

To derive the governing relationship for the complete
σc− δ curve, it would be convenient to separately con-
sider two distinct branches of this curve—The debond-
ing σc− δ branch and the pull-outσc− δ branch.

4.1. Debonding σc− δ branch
The debondingσc− δ branch consists of the contribu-
tions of two different fiber groups. In the first group,
fibers completely debond and then pull-out. These are
the surviving fibers. Fibers with the longest embed-
ment length (̀= L f/2) will completely debond when
δ= δ∗. Therefore, the debondingσc− δ branch corre-
sponds to the portion of theσc− δ curve for which
δ≤ δ∗. At each value ofδ, a fraction of the fibers are in
a debonding mode, while the others (with short embed-
ment lengths) are either in a pull-out mode or have com-
pletely pulled-out of the matrix and no longer contribute
to the composite bridging stress. This is explicitly ac-
counted for by proper selection of the integration points
in Equation 23 as shown in Appendix A. The contribu-
tion of the surviving fibers is computed by multiplying
the fiber bridging stress byqs(`).

The second group of fibers consists of those fibers
which rupture sometime during the debonding process.
The contribution of these fibers is computed by mul-
tiplying the fiber bridging stress byqf (`). Within this
group of fibers, at each value of CODδ, some fibers

are in a debonding mode while others are in a pull-out
mode. The contribution of the first subgroup is com-
puted by multiplying the fiber bridging stress byqs(δ).
The contribution of the second subgroup is computed by
multiplying the fiber bridging stress byqf (δ). Note that
the fiber bridging stress for this subgroup of fibers de-
pends on the mean fiber failure positionh(`,δ) as shown
in the appendix. Therefore, rupturing fibers would still
contribute to the composite bridging stress through fric-
tional fiber pull-out. However, this contribution is quite
small compared to that of the surviving fibers. This is
unlike the case of continuous-aligned fiber reinforced
composites where rupturing fibers are the only contrib-
utors to the frictional fiber pull-out portion of theσc− δ
curve. The complete derivation of the debondingσc− δ
branch is given in Appendix A. After dropping the neg-
ligible contribution of rupturing fiber to frictional fiber
pull-out and summing all other contributions, the fol-
lowing expression of theσc− δ relationship is obtained:

σ̂c =
(
δ̂

δ̂∗

)1/2

0
[
a, t∗, t0(δ̂)

]+ δ̂∗[x∗]2

×0[3a, t0(δ̂), t1(δ̂)
]+ x∗0

[
2a, t0(δ̂), t1(δ̂)

]
− δ̂0[a, t0(δ̂), t1(δ̂)] + qs(δ̂)

(
δ̂

δ̂∗

)1/2

×
{

m+ 1

x∗

[
1−

(
δ̂

δ̂∗

)1/2
]
− 0[a, t∗, t0(δ̂)

]}
for δ̂ ≤ δ̂∗ (24)

where

σ̂c = σc

g

(
S

m+ 1

)(
Vf

2

) , a = 1

m+ 1
,

x∗ = λeS

L f/2
, t∗ =

(
1

x∗

)m+1

,

t0(δ̂) =
(

1

x∗

(
δ̂

δ̂∗

)1/2
)m+1

, t1(δ̂) =
(
δ̂

x∗

)m+1

and

x0 =
(
δ̂

δ̂∗

) 1
2

4.2. Pull-out σc− δ branch
The Pull-outσc− δ branch corresponds to the portion of
theσc− δ curve for whichδ≥ δ∗. Two different groups
contribute to this branch. The first group consists of
those fibers that have survived and are in a pull-out
mode. The second group corresponds to those fibers that
have failed during debonding and are also in a pull-out
mode. The contribution of the fibers from the second
group was found to be very negligible compared to the
one from the first group. After dropping the negligible
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contribution of the second group of fibers, the post-peak
σc− δ relationship would be given by:

σ̂c = δ̂∗[x∗]20
[
3a, t∗, t1(δ̂)

]+ x∗0
[
2a, t∗, t1(δ̂)

]
− δ̂0[a, t∗, t1(δ̂)

]
(25)

5. Discussion of the σc− δ curve and
experimental verification

Fig. 7 shows the completeσc− δ curve for a compos-
ite with the same microstructural properties as the one
presented in Fig. 2. For this compositeδ∗ is equal to
0.781 mm and the composite bridging stress becomes
equal to zero whenδ is equal to approximately 4 mm.
The ultimate composite bridging stressσcu occurs at a
CODδu equal to 0.135 mm. In what follows, the portion
of theσc− δ curve for whichδ≤ δu will be referred to
as the pre-peakσc− δ curve and that for whichδ > δu
will be referred to as the post-peakσc− δ curve.

Fig. 8 shows a comparison between model-predicted
and experimentally-measured post-peakσc− δ curves
for a cementitious composite with 2% by volume of
Kevlar fiber reinforcement. The original data was re-
ported by Maalejet al.[4]. Post-test examination of the

Figure 7 Completeσc− δ curve showing the contribution of surviving
fibers.

Figure 8 Comparison between model-predicted and experimentally-
measured post-peakσc− δ curves.

fracture surface revealed that a significant proportion of
the reinforcing fibers have ruptured in the composite.
The microstructural parameters used in the predicting
model were as follows:Vf = 0.02, Em= 13, 000 MPa,
Ef = 69, 800 MPa, τ = 4.5 MPa, df = 0.012 mm,
L f = 12.7 mm, m= 100 and S0= σ0A1/m

0 (where
A0= 1 mm2 andσ0= 2700 MPa). Except formandS0,
all values of microstructural parameters are actual. The
interfacial bond strength has been independently mea-
sured by Wang [13]. In the absence of independently-
determinedmandS0 for Kevlar fibers, the assumed val-
ues seem to represent well the experimental data. The
relatively high value ofmused implies that Kevlar fibers
are assumed to have a narrow fiber strength distribution.

Note that in most fiber reinforced cementitious com-
posites the complete pre-peakσc− δ curve is very dif-
ficult to measure. Part of the difficulty is that the micro-
crack opening is very small at this fiber bridging stage,
and in ordinary fiber reinforced cementitious compos-
ites, this portion is completely masked by the matrix
strength. This means that as soon as the matrix cracks,
the load has already exceeded the maximum bridging
strength of the fibers, and only the post-peak portion is
revealed in the experiment. This condition is schemat-
ically illustrated in Fig. 9. The figure shows that the
crack has not completely propagated through the speci-
men, but the crack opening displacement at the mid-
point of the crackδm has already exceeded the CODδu
corresponding to the maxima of the composite bridg-
ing stressσcu. By the time the crack reaches both edges
of the specimen, the composite bridging stress trans-
ferred across the matrix crack would be on the post-peak

Figure 9 Propagating matrix crack bridged by fibers. The figure illus-
trates a condition where the pre-peakσc− δ curve can-not be obtained
from a uniaxial tension test.
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σc− δ curve. This is believed to be the reason why
the pre-peakσc− δ curve was not captured for the 2%
Kevlar fiber composite.

6. Parametric study
Fig. 10 shows the effect of Weibull modulusm on
theσc− δ curve. As indicated, composites with lower
values ofm have higher ultimate composite bridg-
ing stressesσcu. In this case, fiber rupture occurs in a
more progressive manner—allowing a significant pro-
portion of fibers to transfer higher stresses across the
matrix crack. As the Weibull modulus increases,σcu
decreases but the rate of stress loss from the peak in-
creases. For large values ofm (i.e.m> 100), the present
model predicted aσc− δ curve that is close agreement
with that obtained from the FPRM model (which as-
sumes that fibers have a deterministic tensile rupture
strength). In this case, the curve shows a sudden drop in
stress from the peak due to fiber rupture. As discussed
earlier, when a deterministic tensile rupture strength
is assumed, all fibers with large embedment lengths
(`≥ Lc= σfudf/4τ ) fail when the COD reaches a criti-
cal value equal toδc. In this case, the post-peak portion
of theσc− δ curve is due to the contribution of the sur-
viving fibers (fibers with embedment length`< Lc).

Fig. 11 shows a series ofσc− δ curves for the same
composite with different lengths of fibers. As the fig-
ure shows, composites with longer fiber lengths have
higher composite peak stresses. This is the case because

Figure 10 Effect of Weibull modulus onσc− δ curve. (a) Pre-peak
σc− δ curve. (b) Completeσc− δ curve.

Figure 11 Effect of fiber length onσc− δ curve.

Figure 12 Effect of scale parameter (characteristic stress) onσc− δ
curve.

at each value ofδ, longer fibers provide more effective
stress transfer across the matrix crack. As larger pro-
portions of fibers carry higher stresses, larger propor-
tions of fibers fail as well. This is why there is a sharper
drop in the bridging stress from the peak for composites
with longer fiber lengths. If one defines the composite
bridging fracture energyGc as the area under theσc− δ
curve, one can conclude that below a critical value of
L f , an increase in the length of the fiber is associated
with an increase in bothσcu andGc. However, above
the same critical value, an increase inL f is associated
with an increase inσcu but a decrease inGc.

Fig. 12 shows the effect of scale parameterS0 on the
σc− δ curve for the same composite. As indicated, a
composite with a higher scale parameterS0 has also
higher composite bridging strength and fracture en-
ergy. At the micro-structural level, an increase inS0
results in delaying the occurrence of fiber rupture as
well as reducing the proportions of rupturing fibers.
The former results in increasing the composite bridg-
ing strength while the latter results in increasing the
composite bridging fracture energy.

Figs 13 and 14 show the effects of interfacial bond
strength and fiber diameter on theσc− δ curve, respec-
tively. These figures indicate that both parameters in-
fluence theσc− δ curve in the same manner as does the
length of the fiber. Both figures indicate the presence
of a critical interfacial bond strength (assuming that all
other parameters are held constant) and a critical fiber
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Figure 13 Effect of interfacial bond strength onσc− δ curve.

Figure 14 Effect fiber diameter onσc− δ curve.

Figure 15 Effect fiber length on the composite bridging strength.

diameter for the composite. Up to the critical value of
interfacial bond strength, an increase inτ results in an
increase in bothσcu andGc. Thereafter, an increase in
τ is associated with an increase inσcu and a decrease in
Gc. For fiber diameter, above the critical value, a reduc-
tion in df increases bothσcu andGc. Below this critical
value, however, a reduction in fiber diameter positively
affectsσcu while negatively affectingGc.

Fig. 15 shows the variation of normalized composite
bridging strength as function of normalized fiber length.
For a given value of Weibull modulusm, the normal-
izing parameterS (which has units of stress) can be
thought of as the average tensile strength of the fiber.

As indicated, an increase in the length of the fiber is
associated with an increase in the composite bridging
strength. However, the rate of strength increase starts
to diminish when the normalized fiber length is greater
than 2. The observed trend suggests that this rate even-
tually becomes equal to zero. IfS is thought of as the
average tensile strength of the fiber, one can conclude
that as the normalized fiber length approaches 2, the
average tensile stress in the fiber starts to approachS.
OnceS is reached, no further increase in the average
tensile stress of the fiber is expected. For each value
of m, the normalized composite bridging strength ap-
proaches a limiting value when the length of the fiber
becomes very large. Asmgets larger, this limiting value
appears to approach 0.5. This result is consistent with
the classical concept that when fibers are infinitely long
and randomly oriented in three dimensions, the num-
ber of fibers crossing a planar matrix crack is equal to
half the number if all fibers were oriented in a direction
perpendicular to the matrix crack [14]. In either case,
the post cracking strength would be equal to the num-
ber of fibers times the maximum load transferred by
each fiber. For infinitely long fibers, randomly oriented
in three dimensions in a brittle matrix, the compos-
ite post-cracking strength would be equal to 0.5Vfσfu
whereσfu is the tensile strength of the fiber.

7. Conclusions
The structural performance of a fiber reinforced brittle
matrix composite can be related to the material post-
cracking behavior (σc− δ law) as well as the component
size and geometry. For this reason it is important to be
able to determine how theσc− δ law can be influenced
by tailoring the microstructural parameters. The pre-
ceding discussion suggests that the Weibull modulus
and characteristic stress have a significant effect on the
compositeσc− δ law. The presence of a fiber strength
distribution induces a progressive fiber rupture mech-
anism which seemed to positively affect both the pre-
peak and the post-peakσc− δ curves. The former was
found to influence the conditions for steady-state crack-
ing while the latter was found to influence the mecha-
nism of slow crack propagation. In addition to the two
parameters of the Weibull distribution, other parameters
such as the length and diameter of the fiber as well as the
interfacial bond strength would also influence theσc− δ
curve. These parameters influence the state of stress
in the fibers as well as the fiber/matrix stress transfer
mechanism. The proposed model points to the existence
of an optimum value for each one these parameters (as-
suming all others are held constant), thereby offering a
range of possibilities on how the composite properties
can be optimized.

Appendix A. Derivation of the
σc− δ relationship
A.1. Debonding σc− δ branch
The debondingσc− δ branch consists of the contribu-
tions of two different groups of fibers. In the first group,
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fibers completely debond and then pull-out, while in the
second group fibers rupture during debonding. Thus

σc(δ) = σcs+ σcf = (σcsd+ σcsp)+ (σcfd+ σcfp)

δ ≤ δ∗ (A1)

where

σcsd=Contribution of surviving fibers toσc during
debonding.

σcsp=Contribution of surviving fibers toσc during
pull-out.

σcfd=Contribution of failing fibers toσc during
debonding.

σcfp=Contribution of failed fibers toσc during
pull-out.

A.1.1. Surviving fibers
During debonding we should have:

δ≤ δ0⇒ x≥ x0

where

x0 =
(
δ̂

δ̂∗

) 1
2

.

Thus:

σcsd= Vf

2

∫ 1

x0

qs(x)σd dx (A2)

where

qs(x) = exp

[
−
(

x

x∗

)m+1
]
, x∗ = λeS

(L f/2)

and

σd = S

x∗

(
δ̂

δ̂∗

) 1
2

Evaluation of Equation A2 gives:

σ̂csd=
(
δ̂

δ̂∗

)1/2

0
[
a, t∗, t0(δ̂)

]
(A3)

where

σ̂csd= σcsd(
S

m+ 1

)(
Vf

2

) , t∗ =
(

1

x∗

)m+1

and

t0(δ̂) =
(

1

x∗

(
δ̂

δ̂∗

)1/2
)m+1

During pull-out we should have:δ≤ `⇒ x≥ x1 where
x1= δ̂, andx≤ x0. Thus

σcsp= Vf

2

∫ x0

x1

qs(x)σp dx (A4)

σ̂csp= δ̂∗[x∗]20[3a, t0(δ̂), t1(δ̂)] + x∗

×0[2a, t0(δ̂), t1(δ̂)]− δ̂0[a, t0(δ̂), t1(δ̂)] (A5)

where

σp = S

x∗
(x + δ̂∗x2− δ̂)

A.1.2. Failing fibers
During debonding, the contribution of the failing fibers
to σc is given by:

σcfd = Vf

2

∫ 1

x0

qf (x)qs(δ)σd dx (A6)

σ̂cfd = qs(δ̂)

(
δ̂

δ̂∗

)1/2
{

m+ 1

x∗

[
1−

(
δ̂

δ̂∗

)1/2
]

−0[a, t∗, t0(δ̂)
]}

(A7)

Note thatqs(δ) is used in Equation A6 to account for
the contributions of only those fibers which did not fail
yet at the CODδ.

For each value ofδ≤ δ∗, rupturing fibers with em-
bedment length̀ will have a mean fiber failure position
equal toh(`, δ). The contribution of the failing fibers to
σc during the sliding stage is valid forδ≤ δ0 (or x≥ x0).
Therefore, this contribution can be computed from the
following equation:

σcfp = Vf

2

∫ 1

x0

qf (x)qf (δ̂)
S

x∗
[ĥ(x, δ̂)− δ̂/2] dx (A8)

σcfp =
∫ 1

x0

qf (x)
m+ 1

x∗
qf (δ̂)[ĥ(x, δ̂)− δ̂/2] dx (A9)

For each value ofδ≤ δ∗, numerical integration of
Equation A9 is necessary to computeσcfp(δ).

A.2. Pull-out σc− δ branch
Two different groups contribute to the pull-outσc− δ
branch. The first group consists of those fibers that have
survived and are in a stage of pull-out. The second
group corresponds to those fibers that have failed during
debonding and are in a pull-out mode. Thus:

σc(δ) = σcs+ σcf δ ≥ δ∗ (A10)

where
σcs=Contribution of surviving fibers toσc during

pull-out.
σcf=Contribution of failed fibers toσc during pull-

out.
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A.2.1. Surviving fibers
The contribution of the surviving fibers toσc is given
by the following equation:

σcs= Vf

2

∫ 1

x1

qs(x)σp dx (A11)

σ̂cs= δ̂∗[x∗]20
[
3a, t∗, t1(δ̂)

]+ x∗0
[
2a, t∗, t1(δ̂)

]
− δ̂0[a, t∗, t1(δ̂)

]
(A12)

A.2.2. Failed fibers
The contribution of the failed fibers toσc is given by
the following equation

σcf = Vf

2

∫ 1

x2

qf (x)
S

x∗

[
ĥ(x)+ δ̂

∗

2
x2− δ̂

]
dx (A13)

σ̂cf =
∫ 1

x2

qf (x)
m+ 1

x∗

[
ĥ(x)+ δ̂

∗

2
x2− δ̂

]
dx (A14)

where

ĥ(x2)+ δ̂
∗

2
x2

2 − δ̂ = 0 (A15)

To obtainσcf (δ) for each value ofδ≥ δ∗ , Equation A15
would have to be solved forx2 and the integral in
Equation A15 would have to be evaluated using numer-
ical integration. By usingx2 as a lower limit in above

integral, only those fibers with large values ofh(`) are
counted as contributing fibers.
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